引言
随着工业安全问题日益严重,防护装备穿戴的检查变得至关重要。尤其在建筑、制造和矿业等高危行业,工作人员的安全防护装备不仅是保护生命安全的必要条件,更是规范操作的基础。传统的人工检查防护装备穿戴是否合规,既费时又易出错,因此,自动化检测成为提升工作效率与准确度的迫切需求。基于深度学习的目标检测技术,尤其是YOLOv5(You Only Look Once v5),因其高效且精度较高的特点,成为解决此问题的一个理想方案。
本文将详细介绍如何使用YOLOv5模型结合UI界面实现防护装备穿戴检查的系统。通过数据集的构建、模型训练及UI设计,最终实现一个完整的自动检测系统,能够实时检测员工是否正确穿戴了防护装备,并在UI界面中显示检测结果。
1. 防护装备穿戴检查的背景与需求
防护装备的穿戴检查是确保安全生产的一个基本环节。常见的防护装备包括安全帽、防护眼镜、防护口罩、防护手套、防护鞋等。在高危行业中,任何一项防护装备的遗漏或穿戴不合规,都会增加事故发生的风险。传统的人工检查方法容易出现遗漏或错误,且效率较低。通过使用YOLOv5等深度学习模型进行自动检测,可以实时监控和识别工作人员的防护装备穿戴情况,及时发现问题并进行干预。
2. YOLOv5目标检测模型简介
YOLOv5是由Ultralyti