备战2024数学建模国赛(模型十二):逻辑回归 优秀案例(二)逻辑回归模型在SARS流行趋势优化中的应用

目录

1. 引言

2. 数据集

3. 数据预处理

3.1 读取数据

3.2 数据清洗

3.3 特征选择与工程

4. 模型训练

4.1 划分训练集和测试集

4.2 构建逻辑回归模型

4.3 模型评估

5. 流行趋势优化

5.1 模型优化

5.2 预测与优化策略

6. 结论

7. 附录

7.1 代码清单

8. 模型扩展与改进

8.1 多特征融合

8.2 高阶特征与交互作用

8.3 非线性模型与特征选择

8.4 模型集成与调优

9. 模型在实际应用中的考量

9.1 数据获取与更新

9.2 模型解释与决策支持

9.3 模型验证与应急预案

10. 实际案例分析

10.1 案例分析步骤

11. 结论与建议


1. 引言

SARS(严重急性呼吸综合症)是一种由冠状病毒引起的急性呼吸道传染病。2002年底至2003年初,SARS在全球范围内爆发,引发了广泛的关注和研究。为了有效控制类似疫情的流行趋势,建模预测和优化流行趋势成为关键任务。本案例将介绍如何使用逻辑回归模型来预测和优化SARS流行趋势,并详细展示模型的实现过程,包括数据预处理、特征选择、模型训练和评估等步骤。

2. 数据集

在本案例中,我们使用一个虚拟的SARS疫情数据集,其中包含了疫情的各类相关数据,例如感染人数、病例来源、传播途径等。假设数据集的结构如下:

  • date: 日期
  • infected_count: 感染人数
  • population_density: 人口密度
  • temperature: 气温
  • humidity: 湿度
  • travel_index: 旅行指数(反映出行情况)

数据文件格式为CSV。

3. 数据预处理
3.1 读取数据

首先,使用Python中的Pandas库读取CSV文件。

 

import pandas as pd

# 读取数据
data = pd.read_csv('sars_data.csv')
 

3.2 数据清洗

检查缺失值,并进行处理。

 

# 查看缺失值情况
print(data.isnull().sum())

# 填充缺失值
data.fillna(method='ffill', inplace=True)
 

3.3 特征选择与工程

根据数据和研究目标,选择相关特征并进行必要的特征工程。

 

from sklearn.preprocessing import StandardScaler

# 特征选择
features = ['population_density', 'temperature', 'humidity', 'travel_index']
X = data[features]
y = data['infected_count']

# 特征标准化
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)
 

4. 模型训练
4.1 划分训练集和测试集

将数据集划分为训练集和测试集。

 
from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X_scaled, y, test_size=0.3, random_state=42)
4.2 构建逻辑回归模型

使用Scikit-Learn中的逻辑回归模型进行训练。

 

from sklearn.linear_model import LogisticRegression

# 创建逻辑回归模型
model = LogisticRegression()
model.fit(X_train, y_train)
 

4.3 模型评估

评估模型的性能,包括准确率、精确率、召回率和F1分数。

 

from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score

# 进行预测
y_pred = model.predict(X_test)

# 计算评估指标
accuracy = accuracy_score(y_test, y_pred)
precision = precision_score(y_test, y_pred, average='weighted')
recall = recall_score(y_test, y_pred, average='weighted')
f1 = f1_score(y_test, y_pred, average='weighted')

print(f'Accuracy: {accuracy:.4f}')
print(f'Precision: {precision:.4f}')
print(f'Recall: {recall:.4f}')
print(f'F1 Score: {f1:.4f}')
 

5. 流行趋势优化
5.1 模型优化

根据模型的表现,可以进行进一步的优化,例如调整超参数或选择其他特征。

 

from sklearn.model_selection import GridSearchCV

# 超参数网格搜索
param_grid = {
    'C': [0.1, 1, 10, 100],
    'solver': ['liblinear', 'saga']
}
grid_search = GridSearchCV(LogisticRegression(), param_grid, cv=5)
grid_search.fit(X_train, y_train)

# 最佳参数
print("Best Parameters:", grid_search.best_params_)
 

5.2 预测与优化策略

利用优化后的模型进行未来趋势预测,并提出优化建议。

 

# 使用最佳模型进行预测
best_model = grid_search.best_estimator_
future_predictions = best_model.predict(X_test)

# 输出预测结果
predicted_counts = pd.DataFrame({'Date': data['date'][X_test.index], 'Predicted': future_predictions})
print(predicted_counts.head())
 

6. 结论

通过逻辑回归模型对SARS流行趋势进行预测和优化,能够为流行病防控提供有价值的参考。模型的准确性和优化策略能够帮助相关部门制定有效的控制措施,从而降低疫情传播的风险。

7. 附录
7.1 代码清单
 
import pandas as pd
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split, GridSearchCV
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score

# 读取数据
data = pd.read_csv('sars_data.csv')

# 数据清洗
data.fillna(method='ffill', inplace=True)

# 特征选择与工程
features = ['population_density', 'temperature', 'humidity', 'travel_index']
X = data[features]
y = data['infected_count']
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)

# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X_scaled, y, test_size=0.3, random_state=42)

# 构建逻辑回归模型
model = LogisticRegression()
model.fit(X_train, y_train)

# 模型评估
y_pred = model.predict(X_test)
accuracy = accuracy_score(y_test, y_pred)
precision = precision_score(y_test, y_pred, average='weighted')
recall = recall_score(y_test, y_pred, average='weighted')
f1 = f1_score(y_test, y_pred, average='weighted')

print(f'Accuracy: {accuracy:.4f}')
print(f'Precision: {precision:.4f}')
print(f'Recall: {recall:.4f}')
print(f'F1 Score: {f1:.4f}')

# 超参数优化
param_grid = {'C': [0.1, 1, 10, 100], 'solver': ['liblinear', 'saga']}
grid_search = GridSearchCV(LogisticRegression(), param_grid, cv=5)
grid_search.fit(X_train, y_train)
print("Best Parameters:", grid_search.best_params_)

# 预测与优化策略
best_model = grid_search.best_estimator_
future_predictions = best_model.predict(X_test)
predicted_counts = pd.DataFrame({'Date': data['date'][X_test.index], 'Predicted': future_predictions})
print(predicted_counts.head())

这个案例提供了一个详细的逻辑回归模型应用示例,用于预测和优化SARS流行趋势。你可以根据具体数据和需求进行相应的调整和扩展。

8. 模型扩展与改进

为了进一步提高模型的预测性能和应用效果,我们可以考虑以下几种扩展和改进策略:

8.1 多特征融合

逻辑回归模型可以通过引入更多的特征来增强其预测能力。我们可以尝试融合额外的特征,例如医疗资源情况、公共卫生政策等。

 

python

复制代码

# 假设我们新增了两个特征
data['medical_resources'] = ...  # 例如,医院床位数
data['public_health_policy'] = ...  # 例如,实施的控制措施强度

# 重新选择特征
features = ['population_density', 'temperature', 'humidity', 'travel_index', 'medical_resources', 'public_health_policy']
X = data[features]
X_scaled = scaler.fit_transform(X)

 

8.2 高阶特征与交互作用

引入高阶特征或特征之间的交互作用可能会改善模型表现。例如,温度和湿度的交互项可能会对SARS传播有重要影响。

 

from sklearn.preprocessing import PolynomialFeatures

# 引入高阶特征
poly = PolynomialFeatures(degree=2, include_bias=False)
X_poly = poly.fit_transform(X_scaled)

# 重新训练模型
X_train, X_test, y_train, y_test = train_test_split(X_poly, y, test_size=0.3, random_state=42)
model.fit(X_train, y_train)
 

8.3 非线性模型与特征选择

逻辑回归模型主要用于线性问题。为了捕捉非线性关系,可以考虑使用更复杂的模型,如支持向量机(SVM)或随机森林。同时,进行特征选择以剔除冗余特征可以提升模型的性能。

 

from sklearn.svm import SVC
from sklearn.ensemble import RandomForestClassifier
from sklearn.feature_selection import SelectKBest, f_classif

# 使用随机森林进行模型训练
rf_model = RandomForestClassifier(n_estimators=100, random_state=42)
rf_model.fit(X_train, y_train)

# 特征选择
selector = SelectKBest(f_classif, k=5)
X_new = selector.fit_transform(X_scaled, y)
 

8.4 模型集成与调优

模型集成(如投票分类器)可以结合多个模型的优势,提高整体预测性能。

 

from sklearn.ensemble import VotingClassifier

# 创建逻辑回归和随机森林模型
log_model = LogisticRegression()
rf_model = RandomForestClassifier(n_estimators=100, random_state=42)

# 创建投票分类器
voting_clf = VotingClassifier(estimators=[('log', log_model), ('rf', rf_model)], voting='soft')
voting_clf.fit(X_train, y_train)

# 评估模型
y_pred = voting_clf.predict(X_test)
print("Voting Classifier Accuracy:", accuracy_score(y_test, y_pred))
 

9. 模型在实际应用中的考量
9.1 数据获取与更新

确保数据的及时性和准确性是模型应用中的关键。实际应用中,可能需要实时获取和更新数据,以反映疫情的最新动态。

9.2 模型解释与决策支持

逻辑回归模型的系数可以用于解释不同特征对SARS流行趋势的影响,从而为决策者提供有价值的信息。

 

import numpy as np

# 获取模型系数
coefficients = model.coef_[0]
feature_names = features

# 打印每个特征的系数
for feature, coef in zip(feature_names, coefficients):
    print(f'Feature: {feature}, Coefficient: {coef:.4f}')
 

9.3 模型验证与应急预案

除了使用训练集和测试集进行验证外,模型还应经过交叉验证和实际数据验证。同时,应制定应急预案,以应对模型预测与实际情况可能存在的差异。

10. 实际案例分析

为了进一步说明模型的实际应用,可以考虑分析具体的SARS疫情案例,利用上述模型进行预测,并与实际数据进行对比。

10.1 案例分析步骤
  1. 选择具体地区和时间段:选择具有代表性的地区和时间段进行详细分析。
  2. 获取实际数据:从公开数据库或相关机构获取该地区的实际疫情数据。
  3. 应用模型进行预测:使用上述逻辑回归模型进行疫情趋势预测。
  4. 结果对比与分析:将预测结果与实际数据进行对比,分析模型的表现。
 

# 假设我们选择了特定的地区和时间段
specific_data = data[data['region'] == 'RegionX']
X_specific = scaler.transform(specific_data[features])
y_actual = specific_data['infected_count']

# 进行预测
y_pred_specific = model.predict(X_specific)

# 对比预测结果与实际数据
comparison_df = pd.DataFrame({'Date': specific_data['date'], 'Actual': y_actual, 'Predicted': y_pred_specific})
print(comparison_df.head())
 

11. 结论与建议

通过本案例,我们展示了逻辑回归模型在SARS流行趋势预测中的应用。模型的准确性和优化策略为疫情防控提供了有力的支持。建议持续关注数据的变化,定期更新模型,并结合实际情况进行模型调整和优化。

  • 4
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

2024年华数杯数学建模

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值