备战数学建模43-决策树&随机森林&Logistic模型(攻坚站7)

决策树(Decision Tree)是在已知各种情况发生概率的基础上,通过构成决策树来求取净现值的期望值大于等于零的概率,评价项目风险,判断其可行性的决策分析方法,是直观运用概率分析的一种图解法。由于这种决策分支画成图形很像一棵树的枝干,故称决策树。在机器学习中,决策树是一个预测模型,他代表的是对象属性与对象值之间的一种映射关系。Entropy = 系统的凌乱程度,使用算法ID3C4.5和C5.0生成树算法使用熵。这一度量是基于信息学理论中熵的概念。随机森林 (Random forest)[5] 是由美国科学家 Leo Breiman 将其在 1996 年提出的
Bagging 集成学习理论 与 Ho 在 1998 年提出的随机子空间方法相结合,于 2001 年发
表的一种机器学习算法。logistic回归又称logistic回归分析,主要在流行病学中应用较多,比较常用的情形是探索某疾病的危险因素,根据危险因素预测某疾病发生的概率,等等。例如,想探讨胃癌发生的危险因素,可以选择两组人群,一组是胃癌组,一组是非胃癌组,两组人群肯定有不同的体征和生活方式等。这里的因变量就是是否胃癌,即“是”或“否”,为两分类变量,自变量就可以包括很多了,例如年龄、性别、饮食习惯、幽门螺杆菌感染等。自变量既可以是连续的,也可以是分类的。通过logistic回归分析,就可以大致了解到底哪些因素是胃癌的危险因素。

目录

一、决策树

1.1、决策树算法概述

1.2、熵值的作用

1.3、决策树构造实例

1.4、信息增益率与gini系数

 1.5、剪枝的方法

 1.6、决策树实验案例及分析

二、随机森林

2.1、随机森林的算法原理

2.2、随机森林的优势与特征重要指标

 2.3、随机森林的分类过程

2.4、随机森林的实验案例及分析

使用IBM SPSS Modeler进行随机森林算法预测的过程可以通过拖拽节点、设置属性、连接节点以及运行来完成数据准备。 随机森林是一种Bagging模型,它是通过并行训练多个分类器来建立的。在随机森林中,数据会进行随机采样,特征也会进行随机选择,然后建立多个决策树,即多个分类器,将这些分类器放在一起就组成了森林。 训练随机森林的过程就是训练各个决策树的过程,在训练过程中,各个决策树的训练是相互独立的,因此可以通过并行处理来提高生成模型的效率。当输入待分类样本时,随机森林会输出分类结果,这个结果是由每个决策树的分类结果进行简单投票决定的。随机森林的思想是:随机选取样本构造决策树,随机选取特征进行分裂。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* [使用IBM SPSS Modeler进行随机森林算法预测](https://blog.csdn.net/xza13155/article/details/124169025)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] - *2* *3* [备战数学建模43-决策树&随机森林&Logistic模型(攻坚7)](https://blog.csdn.net/nuist_NJUPT/article/details/126787683)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

nuist__NJUPT

给个鼓励吧,谢谢你

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值