1. 引言
手写数字和符号识别是一项重要的研究课题,广泛应用于金融、教育、邮政和文档管理等多个领域。传统的手动输入方式不仅效率低下,而且容易出现错误。随着深度学习技术的发展,利用卷积神经网络(CNN)等模型进行手写数字和符号的自动识别,已成为一种高效且可靠的解决方案。本文将详细介绍如何构建一个基于YOLOv10深度学习的手写数字和符号识别系统,包括数据集准备、模型设计与训练、用户界面开发等内容。
目录
2. 系统概述
2.1 系统功能
本系统主要实现以下功能:
- 手写数字识别:能够准确识别0到9的手写数字。
- 手写符号识别:支持对常见符号(如加号、减号、乘号等)的识别。
- 用户交互界面:提供直观的用户界面,方便用户输入手写数字和符号。
- 结果展示与记录:显示识别结果,并支持保存识别记录。