1. 引言
随着城市生活垃圾产量的不断增加,科学高效的垃圾分类变得尤为重要。垃圾分类不仅能促进资源的回收再利用,还能有效减少环境污染。传统人工垃圾分类效率低且成本高,自动化视觉识别系统逐渐成为研究热点。
本文结合深度学习目标检测领域最新成果YOLOv8,构建一套智能垃圾分类系统,能实时识别垃圾图片中的不同垃圾类别(如可回收物、有害垃圾、厨余垃圾、其他垃圾等),并通过简洁的UI界面展示识别结果,便于实际应用。全文详细讲解了从数据集准备、模型训练到界面实现的完整流程,并附带完整代码,方便读者复现和扩展。
2. 垃圾分类的重要性
城市垃圾分类涉及环保、资源再生、社会管理等多领域:
- 资源利用:可回收物如纸张、塑料、金属等可循环利用,节约资源。
- 环境保护:有害垃圾如电池、药品若随意丢弃会造成土壤和水源污染。
- 政策推动:国家和地方政策普遍推行垃圾分类,规范市民行为。
- 技术需求:人工识别效率低,自动化视觉识别具备广阔应用前景。
利用计算机视觉技术识别垃圾物品类别,能显著提高垃圾分类的准确率和效率,是智能城市