1. 引言
在现代电力系统中,输电线路的正常运行至关重要。随着电力需求的增加,输电线路设备的监测和维护显得尤为重要。传统的人工巡检方法不仅效率低,而且容易出现疏漏。因此,基于深度学习的自动化检测系统逐渐成为研究的热点。本博客将详细介绍一个基于YOLOv10的输电线路设备检测系统,包括系统架构、数据准备、模型训练、UI界面开发及代码实现。
目录
2. 系统架构
本系统主要由以下几个模块组成:
- 数据采集:通过摄像头或无人机对输电线路进行拍摄,获取图像数据。
- 数据标注:对采集的图像数据进行标注,标识出输电线路设备的位置。
- 模型训练:使用YOLOv10算法进行模型训练,以实现高效的设备检测。
- 检测推理:在实际应用中对新图像进行实时检测。
- UI界面:提供友好的用户界面,用于展示检测结果并进行数据管理。