基于深度学习的输电线路设备检测系统:YOLOv10 实现与 UI 界面设计

1. 引言

在现代电力系统中,输电线路的正常运行至关重要。随着电力需求的增加,输电线路设备的监测和维护显得尤为重要。传统的人工巡检方法不仅效率低,而且容易出现疏漏。因此,基于深度学习的自动化检测系统逐渐成为研究的热点。本博客将详细介绍一个基于YOLOv10的输电线路设备检测系统,包括系统架构、数据准备、模型训练、UI界面开发及代码实现。

目录

1. 引言

2. 系统架构

3. 数据准备

3.1 数据集采集

3.2 数据标注

3.3 data.yaml 文件

3.4 数据集划分

4. YOLOv10模型训练

4.1 环境准备

4.2 下载YOLOv10

4.3 配置训练参数

4.4 开始训练

5. 检测推理

5.1 加载模型

5.2 结果可视化

6. UI界面开发

6.1 PyQt5安装

6.2 UI界面实现

7. 系统测试与结果

7.1 测试样本

7.2 结果分析

8. 总结与展望

9. 附录

9.1 完整代码


2. 系统架构

本系统主要由以下几个模块组成:

  1. 数据采集:通过摄像头或无人机对输电线路进行拍摄,获取图像数据。
  2. 数据标注:对采集的图像数据进行标注,标识出输电线路设备的位置。
  3. 模型训练:使用YOLOv10算法进行模型训练,以实现高效的设备检测。
  4. 检测推理:在实际应用中对新图像进行实时检测。
  5. UI界面:提供友好的用户界面,用于展示检测结果并进行数据管理。

3. 数据准备

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

YOLO实战营

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值