1. 引言
人脸遮挡检测是计算机视觉领域的一个重要研究方向,在安防监控、身份验证、疫情防控等场景中具有广泛应用价值。随着深度学习技术的快速发展,基于卷积神经网络的人脸检测算法取得了显著进步。本文将详细介绍如何使用YOLOv12模型在WiderFace数据集上实现人脸遮挡检测系统,并提供一个完整的带UI界面的解决方案。
1.1 人脸遮挡检测的背景与意义
人脸遮挡检测是指识别图像或视频中的人脸并判断其是否被遮挡(如口罩、眼镜、围巾等物品遮挡)的技术。这项技术在多个领域具有重要应用:
- 疫情防控:在COVID-19疫情期间,自动检测人们是否正确佩戴口罩成为公共场所管理的重要手段。
- 安防监控:识别可疑人员是否故意遮挡面部特征。
- 身份认证:在刷脸支付、门禁系统中,检测用户面部是否被遮挡可提高安全性。
- 智能交通:检测驾驶员是否佩戴口罩或遮挡面部影响驾驶安全。
1.2 技术发展现状
传统的人脸检测方法主要基于Haar特征和Adaboost算法,但这类方法对遮挡情况的处理能力有限。近年来,深度学习技术特别是基于卷积神经网络(CNN)的方法显著提高了人脸检测的准确率: