项目背景
厨房火灾是家庭中常见的安全隐患之一,尤其是在煮饭、炒菜等日常厨房活动中,火源如果得不到及时监控,可能会造成极其严重的火灾事故。传统的火灾报警系统主要依赖于烟雾或温度传感器,但这些传感器并不适用于判断锅具的火源是否熄灭,或者火源是否处于安全范围内。
为了解决这一问题,本文提出了一种基于深度学习的厨房灶火监控与提醒系统,采用NanoDet(一个轻量级目标检测模型)来实时监测厨房灶火的状态,并通过UI界面将监控数据呈现给用户。通过对火源的检测,我们可以在火源过大、火源异常等情况下,及时发出警报并提醒用户关闭火源。
目录
项目目标
本项目的目标是构建一个厨房灶火监控与提醒系统,具体功能如下:
- 火源检测:通过摄像头实时监测厨房灶台上的火源,判断火源是否处于安全状态。
- 警报提醒:当火源异常(例如火源过大或火源未熄灭)时,系统会发出警报提醒用户。
- UI界面ÿ