随着自动驾驶技术的飞速发展,识别和检测路上的行人、其他车辆及障碍物已成为自动驾驶汽车(Autonomous Vehicles, AVs)安全性和可靠性的关键因素之一。对于自动驾驶系统来说,准确且实时地识别周围环境中的行人和其他车辆,是确保自动驾驶系统安全运行的重要一环。
在这篇博客中,我们将探讨如何使用YOLO系列模型(YOLOv5、YOLOv8、YOLOv10)来实现自动驾驶汽车中的行人和车辆检测,重点介绍数据集的准备、YOLO模型的训练与优化、实时检测与UI界面实现,并提供完整的代码。
1. 项目背景与目标
自动驾驶汽车的核心任务之一是实现精准的目标检测与识别。行人和其他车辆是自动驾驶环境中最常见的障碍物,精确地识别这些物体有助于决策系统进行避障、加速、减速等操作,从而保障行车安全。
本项目的目标是:
- 训练YOLOv5、YOLOv8和YOLOv10模型,识别自动驾驶汽车中的行人和其他车辆。
- 提供数据集准备和训练过程的详细说明。
- 实现一个实时检测系统,能够通过摄像头捕捉的图像进行目标检测。
- 实现一个UI界面,展示检测结果和相关信息。