1. 项目背景与需求
随着艺术品市场的繁荣和艺术收藏的日益增长,艺术品识别成为一个亟需解决的问题。无论是博物馆、拍卖行,还是个人收藏者,在艺术品的鉴定和管理过程中,准确地识别艺术品的种类、类别以及来源信息都至关重要。传统的艺术品识别方法大多依赖于人工经验,速度慢且容易出错。因此,基于深度学习的自动化艺术品识别系统显得尤为重要。
本项目旨在使用YOLOv5(You Only Look Once version 5)目标检测模型,结合图形用户界面(UI),实现对艺术品种类的实时识别。该系统能够在博物馆、艺术展览会等场景中,对展示的艺术品进行自动分类,并实时显示在UI界面中,帮助工作人员或参观者快速获取艺术品信息。
通过使用YOLOv5进行图像目标检测,系统能够高效、准确地识别艺术品的种类,为艺术品的管理和展示提供智能化解决方案。
2. 技术概述
2.1 YOLOv5简介
YOLOv5(You Only Look Once version 5)是目标检测领域中广泛应用的深度学习模型,它的优势在于:
- 实时检测:YOLOv5采用回归方法,将目标检测任务转化为回归问题,