1. 引言
犬种识别是计算机视觉领域中的一个重要应用,尤其在宠物管理、动物保护、智能家居等场景中有广泛的需求。传统的犬种识别方法通常依赖于人工特征提取,这些方法在复杂环境下的表现可能较差。随着深度学习的发展,基于卷积神经网络(CNN)的图像识别技术取得了突破,尤其是YOLO(You Only Look Once)系列目标检测模型在图像分类和物体检测中的优异表现,使得其成为犬种识别任务的理想选择。
本项目基于YOLOv8模型,开发一个犬种识别系统,能够实时识别并分类输入图像中的犬种。我们将利用YOLOv8进行训练,并为其开发一个PySide6图形用户界面(GUI)来进行交互,最终实现一个完整的犬种识别系统。
2. 项目目标
本项目的目标是基于深度学习YOLOv8实现犬种识别系统,具体目标包括:
- 使用YOLOv8进行犬种的检测和分类。
- 开发一个直观的GUI,允许用户上传图片并查看结果。
- 完成完整的训练过程,包括数据集准备、模型训练、推理与评估。
3. 环境准备
在开始开发之前,确保开发环境已正确配置。以下是需要安装的必要库:
- Python 3.7及以上