基于深度学习YOLOv11的行人跌倒检测系统

引言

行人跌倒检测是智能监控、医疗护理和公共安全领域的重要研究方向。及时检测行人跌倒事件可以帮助快速响应紧急情况,减少伤害和风险。传统的跌倒检测方法主要依赖于传感器和手工特征提取,这些方法在复杂场景和动态环境中往往表现不佳。近年来,深度学习技术在计算机视觉领域取得了显著进展,尤其是目标检测算法YOLO(You Only Look Once)系列,因其高效和准确的特点,被广泛应用于各种目标检测任务中。

本文将详细介绍如何基于YOLOv11构建一个行人跌倒检测系统,包括数据集的准备、模型的训练、系统的实现以及一个基于PySide6的用户界面。我们将提供完整的代码和详细的步骤,帮助读者理解和实现这一系统。

1. 系统概述

1.1 系统架构

本系统主要由以下几个模块组成:

  1. 数据预处理模块:负责对行人跌倒图像进行预处理,包括图像增强、标注等。
  2. 模型训练模块:基于YOLOv11模型进行训练,生成行人跌倒检测模型。
  3. 检测模块:使用训练好的模型对新的图像进行行人跌倒检测。
  4. 用户界面模块:基于PySide6构建一个用户友好的界面,方便用户进行图
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

深度学习YOLO目标检测实战项目

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值