引言
行人跌倒检测是智能监控、医疗护理和公共安全领域的重要研究方向。及时检测行人跌倒事件可以帮助快速响应紧急情况,减少伤害和风险。传统的跌倒检测方法主要依赖于传感器和手工特征提取,这些方法在复杂场景和动态环境中往往表现不佳。近年来,深度学习技术在计算机视觉领域取得了显著进展,尤其是目标检测算法YOLO(You Only Look Once)系列,因其高效和准确的特点,被广泛应用于各种目标检测任务中。
本文将详细介绍如何基于YOLOv11构建一个行人跌倒检测系统,包括数据集的准备、模型的训练、系统的实现以及一个基于PySide6的用户界面。我们将提供完整的代码和详细的步骤,帮助读者理解和实现这一系统。
1. 系统概述
1.1 系统架构
本系统主要由以下几个模块组成:
- 数据预处理模块:负责对行人跌倒图像进行预处理,包括图像增强、标注等。
- 模型训练模块:基于YOLOv11模型进行训练,生成行人跌倒检测模型。
- 检测模块:使用训练好的模型对新的图像进行行人跌倒检测。
- 用户界面模块:基于PySide6构建一个用户友好的界面,方便用户进行图