1. 引言
稻田虫害是影响水稻产量和质量的重要因素之一。传统的虫害检测方法依赖于人工巡查,效率低下且容易遗漏。随着深度学习技术的快速发展,基于计算机视觉的虫害检测方法逐渐成为研究热点。YOLO(You Only Look Once)系列算法因其高效性和准确性,在目标检测领域得到了广泛应用。本文将详细介绍如何基于YOLOv11实现一个稻田虫害检测系统,并提供完整的Python代码、UI界面设计以及训练数据集。
2. YOLOv11简介
YOLOv11是YOLO系列的最新版本,相较于之前的版本,YOLOv11在检测精度和速度上都有显著提升。YOLOv11采用了更深的网络结构、更高效的特征提取模块以及更先进的损失函数,使其在复杂场景下的目标检测表现更加出色。
2.1 YOLOv11的网络结构
YOLOv11的网络结构主要由以下几个部分组成:
- Backbone:用于提取图像特征的卷积神经网络(CNN)。YOLOv11采用了CSPDarknet53作为其Backbone,该网络结构在保持较高特征提取能力的同时,减少了计算量。
- Neck:用于融合不同尺度的特征图。YOLOv11采用了PANet(Pat