1. 引言
随着航天技术的发展,地球轨道上运行的航天器数量不断增加,其中包括各种卫星、空间站、火箭残骸、废弃卫星和太空垃圾。太空垃圾对现有航天器构成严重威胁,因此,需要高效的监测手段来识别并追踪这些物体,以减少碰撞风险。
深度学习和计算机视觉在航天领域的应用日益广泛,本文将基于YOLOv5目标检测模型,构建一个航天器及太空垃圾检测系统,并结合PyQt5开发一个UI界面,使用户能够通过界面上传图像或视频,实时检测卫星和太空垃圾。
本项目主要内容:
- 基于YOLOv5训练航天器与太空垃圾检测模型
- 数据集收集与预处理
- 训练与优化
- UI界面设计
- 实时检测与可视化