1. 引言
1.1 背景
海上油田是全球能源供应的重要组成部分,其设备(如油井、钻探平台、输油管道等)通常位于恶劣的海洋环境中,容易受到极端天气、机械故障及人为破坏的影响。因此,高效的海上油田设备监控系统对于保障油田安全、提高生产效率至关重要。
传统的海上油田监控主要依赖于人工巡检和远程视频监控,但人工监控成本高、效率低,且容易受环境因素影响。近年来,计算机视觉和深度学习技术的快速发展,使得基于目标检测的智能监控成为可能。其中,YOLOv5(You Only Look Once v5)是一种高效、轻量级、实时性强的目标检测算法,适用于海上油田设备的自动化监测。
1.2 文章目标
本项目基于YOLOv5,构建一个海上油田设备智能监控系统,能够自动识别和检测油井、钻探设备等关键设施,并提供一个可视化UI界面,实现图片和视频的实时