一、引言
随着深度学习技术的不断发展,计算机视觉已经在多个领域取得了突破性进展。特别是在目标检测任务中,YOLO(You Only Look Once)系列模型以其卓越的性能和高效的实时处理能力,成为了目标检测领域的重要工具。YOLOv5是YOLO系列的第五代目标检测模型,其在精度、速度、可扩展性等方面具有出色的表现,尤其适用于实时检测任务。
在海洋生态保护与研究中,海洋动物的自动化识别和监测变得尤为重要。通过使用深度学习技术,尤其是YOLOv5模型,我们能够高效地检测和分类不同种类的海洋动物。本文将详细介绍如何基于YOLOv5模型构建一个海洋动物检测系统,识别四类海洋动物:海豚(dolphin)、鲸鱼(whale)、鲨鱼(shark)和鱼类(fish)。该系统将包括数据集准备、模型训练、实时检测和UI界面的开发。
二、YOLOv5概述
1. YOLOv5简介
YOLOv5是由Ultralytics开发的目标检测模型,基于PyTorch深度学习框架,适用于多种计算机视觉任务。YOLOv5相较于前几代模型,具有如下优势:
- 高效性:YOLOv5在速度和精度之间保持