1. 引言
随着全球环保意识的提高,垃圾分类已成为一个重要的社会议题。通过有效的垃圾分类,可以减少资源浪费、降低环境污染、推动可持续发展。然而,传统的垃圾分类大多依赖人工处理,效率低且容易出错。为了解决这个问题,利用深度学习技术来自动识别并分类垃圾,不仅提高了处理效率,也能减少人工成本。
本文将介绍如何构建一个基于YOLOv10目标检测模型与UI界面的垃圾分类系统,该系统能够自动识别图像中的不同垃圾类型,如可回收物、有害垃圾等,并对垃圾进行正确分类。我们将详细讨论系统的设计与实现,并提供完整的代码和实现步骤。
2. 系统架构与核心组件
本系统的架构包括以下几个核心部分:
- 目标检测模型:YOLOv10 - 用于从垃圾图像中提取不同种类的垃圾。
- UI界面:图形用户界面 - 使用户能够上传垃圾图像,并展示识别结果。
- 数据集:垃圾分类数据集 - 用于训练YOLOv10模型,包含标注好的垃圾图像。
- 分类算法:根据目标识别结果分类垃圾 - 将识别出的垃圾类型应用于实际的垃圾分类操作。