1. 引言
餐厅卫生问题是食品安全的重要组成部分,尤其是在餐厅后厨。后厨是餐饮服务的核心区域,一旦受到害虫如老鼠和蟑螂的侵扰,不仅会影响食品的安全性,还会直接损害餐厅的信誉与经营。传统的卫生监控方法通常依赖人工检查,效率低且容易漏检。而基于深度学习技术的智能监控系统可以实时、精准地检测后厨环境中的害虫,并及时发出警告,极大地提高了卫生监管的效率和精度。
本文将介绍如何使用YOLOv10(You Only Look Once v10)目标检测模型与UI界面构建一个餐厅卫生监控系统,能够自动检测后厨中的老鼠、蟑螂等害虫。我们将详细探讨系统的设计与实现,涵盖从数据集准备到模型训练,再到UI界面开发的全过程,并提供完整的代码和参考数据集。
2. 系统架构与核心组件
本系统的架构包括以下几个主要部分:
- 目标检测模型:YOLOv10 - 用于从视频流或图像中检测老鼠、蟑螂等害虫。
- UI界面:图形用户界面 - 用户通过UI界面可以实时查看监控画面,显示检测到的害虫及其位置。
- 数据集:害虫图像数据集 - 用于训练YOLOv10模型,包含标注好的害虫图像。
- 实时视频流:摄像头监控