1. 引言
在铁路系统中,铁轨的健康状况直接关系到列车运行的安全性。铁轨在长期使用过程中,可能由于机械应力、环境因素、温度变化以及材料老化等原因,出现裂纹、磨损、断裂、错位等缺陷。如果这些缺陷未能被及时发现并修复,可能会导致严重的安全事故,甚至造成列车脱轨等灾难性后果。
传统的铁轨检测方法主要依靠人工巡检或基于超声、磁粉探伤等手段进行。然而,这些方法存在检测效率低、人工成本高、受环境影响大等问题。近年来,随着深度学习技术的快速发展,基于YOLO(You Only Look Once)模型的目标检测技术为铁轨缺陷检测提供了新的解决方案。
本博客将详细介绍如何使用 YOLOv5、YOLOv6、YOLOv7 和 YOLOv8 模型,构建一个完整的铁轨缺陷检测系统,涵盖数据准备、模型训练、推理、UI界面开发和模型性能评估等完整流程。文中将附上完整的代码示例和参考数据集,力求为读者提供从理论到实践的完整解决方案。
2. 背景与理论基础
2.1 铁轨缺陷检测的难点
在实际工程中,铁轨缺陷检测存在以下难点:
- 缺陷形态复杂:裂纹、磨损、错位等缺陷的形态多样,检测难度高。
- 检测环境复杂:列车运行速度快、环境光照复杂、摄像头抖动等会干扰检测效果。
- 数据标注困难:缺陷样本稀少,标注过程需要耗费大量
订阅专栏 解锁全文
777

被折叠的 条评论
为什么被折叠?



