项目概述
随着智能交通和智能铁路的迅速发展,铁路系统的安全性和稳定性愈发受到重视。铁轨作为铁路运输系统的核心部件,其质量直接关系到铁路的安全运行。传统的铁轨缺陷检测方法通常依赖于人工巡检或传统的机器视觉方法,面临着效率低、准确度不足以及人工劳动强度大等问题。
随着深度学习技术的不断发展,YOLOv5等目标检测算法在视觉检测领域表现出了卓越的能力,特别适合用于实时缺陷检测。YOLOv5作为最新版本的YOLO系列模型,其高效性、精度以及实时性,使得它在交通、安防等领域得到了广泛应用。本项目基于YOLOv5深度学习模型,结合Python和PySide6开发了一个铁轨缺陷检测系统。该系统能够识别铁轨图像中的缺陷区域,如裂纹、损伤、磨损等,并自动标记缺陷类型,生成检测报告。
本文将详细介绍该系统的开发过程,包括数据集准备、YOLOv5模型训练、界面设计与开发等,并提供完整的代码实现。
1. 数据集介绍与预处理
1.1 数据集选择
铁轨缺陷检测的关键是拥有一个包含铁轨缺陷类型的高质量数据集。由于目前缺乏公开的专门针对铁轨缺陷的标准数据集,因此本项目采用了自制的铁轨缺陷图像数据集。该数据集包含了多个铁轨缺陷图像,涵盖了裂纹、破损、锈蚀、磨损等不同缺陷类型。
如果你没有现成的数据集,可以参考以下公开数据集:
- Track defect detection dataset:这是一个适用于铁路检测的公开数据集,包含铁轨图像及其对应的缺陷标注。
- Kaggle上的铁路缺陷数
订阅专栏 解锁全文
338

被折叠的 条评论
为什么被折叠?



