1. 项目背景
铁路作为现代交通运输的重要组成部分,维持其良好的运行状态至关重要。随着铁路运输的不断发展,轨道的维护需求也日益增大。传统的铁轨缺陷检测方法多为人工检测或基于简单图像处理的算法,存在效率低下、精度不足等问题。深度学习,特别是目标检测和分割技术的快速发展,为自动化铁轨缺陷检测提供了强有力的技术支持。
本文介绍如何利用深度学习技术,基于YOLO目标检测算法实现铁轨缺陷检测系统。该系统能够自动检测铁轨表面的裂纹、磨损等缺陷,提高铁路维护工作的效率与精度。
目录
2. 系统架构设计
2.1 系统目标
系统的主要目标是通过自动检测铁轨表面的各种缺陷,包括但不限于:
- 裂纹(Cracks)
- 磨损(Wear)
- 锈蚀(Corrosion)
- 其他表面损伤
系统应具有高检测精度和实时处理能力,以便快速响应维护需求。