1. 引言
随着城市化进程的不断加速,垃圾分类已经成为全球环保领域的重要议题。有效的垃圾分类不仅有助于减少垃圾污染,保护环境,还能实现资源的回收再利用。为了推动智能垃圾分类的实施,借助深度学习技术进行垃圾分类和检测已成为近年来的研究热点。
YOLO(You Only Look Once)是一个广泛应用于目标检测任务中的深度学习模型,凭借其优越的检测速度和精度,成为了物体识别的首选算法之一。YOLOv10是YOLO系列模型中的一个最新版本,在准确率、推理速度和鲁棒性上进行了多项优化,适合用于实时垃圾分类和检测任务。
本文将详细介绍如何基于YOLOv10进行生活垃圾的实时检测与分类,并结合PyQt5设计一个UI界面,以便用户能够直观地与系统交互,查看垃圾分类的结果。文章将涵盖从数据集准备到模型训练、UI界面开发的全过程,并提供完整的代码实现。
2. YOLOv10模型概述
2.1 YOLO系列背景
YOLO系列目标检测模型是由Joseph Redmon等人提出的,它将目标检测任务转化为一个回归问题,极大地提高了检测速度。YOLO算法的核心思想是将输入图像划分为多个网格,每个网格负责预测包含物体的边界框以及该物体的类别概率分布。YOLOv10是在YOLOv4和YOLOv5基础上进一步优化的版本,