一、项目背景与需求分析
在工业生产、建筑施工、工厂车间等环境中,工人佩戴安全帽是保障人身安全的重要措施。实时、自动化地监测现场工人是否正确佩戴安全帽,能有效预防安全事故,提升现场管理水平。
传统的人工巡查方式存在:
- 人力成本高
- 巡查效率低
- 监控盲区大
随着深度学习的发展,尤其是目标检测技术的成熟,基于摄像头的自动化安全帽佩戴检测系统成为了智能安全监管的必然趋势。
二、项目目标
- 利用YOLOv8实现工业安全帽佩戴检测,区分正确佩戴安全帽和未佩戴安全帽人员。
- 实现基于Python的简洁UI界面,支持图片上传检测和实时摄像头监控。
- 使用开源安全帽佩戴检测数据集,支持自定义数据扩展。
- 提供完整代码和训练流程,方便部署和二次开发。
三、技术选型
技术 | 说明 |
---|---|
YOLOv8 | 轻量级高效实时目标检测算法 |
PyTorch | 深度学习框架 |