【IndustrialSafetyHelmetYOLOv8】基于YOLOv8的工业安全帽佩戴检测系统开发与UI界面实现

一、项目背景与需求分析

在工业生产、建筑施工、工厂车间等环境中,工人佩戴安全帽是保障人身安全的重要措施。实时、自动化地监测现场工人是否正确佩戴安全帽,能有效预防安全事故,提升现场管理水平。

传统的人工巡查方式存在:

  • 人力成本高
  • 巡查效率低
  • 监控盲区大

随着深度学习的发展,尤其是目标检测技术的成熟,基于摄像头的自动化安全帽佩戴检测系统成为了智能安全监管的必然趋势。


二、项目目标

  • 利用YOLOv8实现工业安全帽佩戴检测,区分正确佩戴安全帽未佩戴安全帽人员。
  • 实现基于Python的简洁UI界面,支持图片上传检测和实时摄像头监控。
  • 使用开源安全帽佩戴检测数据集,支持自定义数据扩展。
  • 提供完整代码和训练流程,方便部署和二次开发。

三、技术选型

技术 说明
YOLOv8 轻量级高效实时目标检测算法
PyTorch 深度学习框架
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

YOLO实战营

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值