1. 引言
植物病害对农业生产构成重大威胁,传统的病害检测依赖人工观察,不仅效率低,还容易受到人为经验的限制。近年来,深度学习技术在计算机视觉领域的突破为叶片病害检测提供了高效、精准的解决方案。本文将介绍如何基于YOLOv10构建一个叶片病害检测系统,使用Leaf Disease数据集,并结合一个可交互的UI界面,实现实时的病害检测。
2. 数据集介绍:Leaf Disease Dataset
Leaf Disease Dataset 是一个常见的叶片病害检测数据集,包含多个类别的病害叶片图片。该数据集适用于目标检测任务,可用于训练深度学习模型,以识别不同类型的植物病害。
2.1 数据集特点
- 多类别:包含多种常见的植物病害类型,如霉菌、锈病、白粉病等。
- 高分辨率:提供清晰的叶片图像,便于模型学习关键特征。
- 多样化:包含不同角度、光照条件和背景环境下的叶片图像,提高模型的泛化能力。
2.2 数据集下载
可以从以下