基于YOLOv8和MOT17数据集的人体检测与多目标跟踪系统设计与实现

一、项目背景与意义

随着计算机视觉的快速发展,人体检测与多目标跟踪(Multi-Object Tracking,MOT)技术在安防监控、智能交通、行为分析等领域中有着广泛的应用前景。尤其是深度学习的加入,使得这些任务在准确率和实时性上得到了极大的提升。

本项目旨在基于YOLOv8检测框架,实现对MOT17数据集中视频中的多个人体目标检测,并对每个人体分配并持续跟踪其唯一ID。同时,我们结合PyQt5开发可视化UI界面,使用户能够实时查看检测与跟踪效果,进一步提升项目的实用性与用户体验。


二、MOT17数据集介绍

MOT17 是多目标跟踪研究领域的权威数据集之一,由多个实际视频序列组成,涵盖了城市、行人密集、人群遮挡等复杂场景。其特点如下:

  • 📦 包含7个训练视频,7个测试视频,每个视频提供:

    • 原始帧(每秒25帧)
    • ground truth文件
    • 可视化标注信息
  • 🧍‍♂️ 标注信息包括:

    • frame_id:帧编号
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

YOLO实战营

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值