一、项目背景与意义
随着计算机视觉的快速发展,人体检测与多目标跟踪(Multi-Object Tracking,MOT)技术在安防监控、智能交通、行为分析等领域中有着广泛的应用前景。尤其是深度学习的加入,使得这些任务在准确率和实时性上得到了极大的提升。
本项目旨在基于YOLOv8检测框架,实现对MOT17数据集中视频中的多个人体目标检测,并对每个人体分配并持续跟踪其唯一ID。同时,我们结合PyQt5开发可视化UI界面,使用户能够实时查看检测与跟踪效果,进一步提升项目的实用性与用户体验。
二、MOT17数据集介绍
MOT17 是多目标跟踪研究领域的权威数据集之一,由多个实际视频序列组成,涵盖了城市、行人密集、人群遮挡等复杂场景。其特点如下:
-
📦 包含7个训练视频,7个测试视频,每个视频提供:
- 原始帧(每秒25帧)
- ground truth文件
- 可视化标注信息
-
🧍♂️ 标注信息包括:
frame_id
:帧编号