1. 项目背景
冷轧钢的生产过程中,由于设备故障、工艺问题或者人为因素,钢板表面可能会出现多种缺陷,如划痕、裂纹、孔洞等,这些缺陷会严重影响钢材的质量。为了提高生产效率,减少人工检测的误差和成本,自动化缺陷检测系统显得尤为重要。深度学习技术,尤其是目标检测领域的 YOLO (You Only Look Once) 模型,已成为处理工业缺陷检测任务的重要工具。
在本文中,我们将介绍如何使用 NEU-DET 数据集,通过 YOLOv8 模型进行冷轧钢缺陷的自动检测,进而实现一个简洁易用的 UI 界面,使得检测过程更加直观和高效。
2. NEU-DET 数据集介绍
NEU-DET 数据集由东北大学计算机科学与工程学院发布,包含 6 类冷轧钢表面缺陷:
类别编号 | 缺陷名称 | 英文名称 |
---|---|---|
0 | 擦伤 | Scratch |
1 | 孔洞 | Hole |
2 |