NEU-DET 冷轧钢缺陷检测:基于 YOLOv8 的目标检测与可视化 UI 实现

1. 项目背景

冷轧钢的生产过程中,由于设备故障、工艺问题或者人为因素,钢板表面可能会出现多种缺陷,如划痕、裂纹、孔洞等,这些缺陷会严重影响钢材的质量。为了提高生产效率,减少人工检测的误差和成本,自动化缺陷检测系统显得尤为重要。深度学习技术,尤其是目标检测领域的 YOLO (You Only Look Once) 模型,已成为处理工业缺陷检测任务的重要工具。

在本文中,我们将介绍如何使用 NEU-DET 数据集,通过 YOLOv8 模型进行冷轧钢缺陷的自动检测,进而实现一个简洁易用的 UI 界面,使得检测过程更加直观和高效。


2. NEU-DET 数据集介绍

NEU-DET 数据集由东北大学计算机科学与工程学院发布,包含 6 类冷轧钢表面缺陷:

类别编号 缺陷名称 英文名称
0 擦伤 Scratch
1 孔洞 Hole
2
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

YOLO实战营

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值