引言
目标检测是计算机视觉中的一项核心任务,涉及在图像中检测和定位各种目标物体。随着深度学习技术的发展,YOLO(You Only Look Once)系列算法因其高效和高精度的特点,成为了目标检测领域的主流方法之一。YOLOv8作为YOLO系列的最新版本,在速度和准确度上相较于前代有了显著提升,广泛应用于自动驾驶、智能监控等场景。
在这篇博客中,我们将深入探讨如何使用YOLOv8模型,并结合KITTI数据集进行目标检测任务。KITTI数据集是一项专门用于自动驾驶研究的著名数据集,包含了丰富的多类目标检测数据。我们将详细介绍YOLOv8模型的训练过程,如何准备KITTI数据集,如何构建用户界面(UI)来展示目标检测的结果,以及完整的代码实现。