1. 引言
随着无人机(UAV,Unmanned Aerial Vehicle)技术的快速发展,无人机的应用越来越广泛,特别是在军事、安防监控、环境监测等领域。无人机目标跟踪技术作为无人机自主导航和任务执行的重要组成部分,成为了计算机视觉和深度学习领域的一个热门研究方向。
无人机目标跟踪旨在从视频流中实时识别并追踪指定的目标,要求在动态环境中保持高精度和鲁棒性。然而,由于环境的复杂性(如遮挡、快速运动、光照变化等),无人机目标跟踪面临着诸多挑战。为了推动该领域的研究,UAV Tracking Dataset应运而生,该数据集专门用于无人机目标跟踪任务,包含了来自无人机视角的视频序列,其中的目标均为无人机本身。
本博客将介绍如何使用YOLOv10模型与UAV Tracking Dataset结合,进行无人机目标检测与跟踪,并通过UI界面展示检测结果。YOLOv10作为一款高效、精确的目标检测模型,适合用于实时目标跟踪任务。我们将逐步讲解从数据预处理、模型训练到跟踪实现的完整过程,并给出完整的代码和实现细节。
2. UAV Tracking Dataset概述
UAV Tracking Dataset 是一个专门用于无人机目标跟踪任务的数据集。数据集包含来自不同视角的无人机图像