1. 引言
随着城市交通管理的日益复杂,违章停车已成为城市交通安全管理中不可忽视的问题。随着深度学习技术的飞速发展,基于计算机视觉的自动违章停车识别系统逐渐成为了智能交通系统中的一个重要组成部分。通过使用YOLOv5模型进行实时目标检测,能够高效识别并定位停车场景中的违章停车行为,从而为交通管理部门提供精准的违章停车数据。
本文将详细介绍如何利用YOLOv5模型实现违章停车自动识别平台,结合UI界面进行展示,并提供参考数据集以帮助读者实现完整的系统开发。内容包括数据集的准备、模型的训练、UI界面的设计以及系统的部署等。
2. 系统概述
违章停车自动识别平台的主要任务是通过视频流实时检测违章停车行为,结合车位检测、车牌识别等技术,及时识别违章停车行为,并在界面上展示实时结果。该系统的核心模块包括:
- YOLOv5目标检测模块:识别图像中的车辆并检测是否存在违章停车。
- 车位检测与车牌识别模块:判断车辆是否停放在合法车位上,识别车牌号进行违章记录。
- UI界面模块:展示实时监控画面以及检测结果,提供用户友好的操作界面。
- 数据处理与训练模块:提供数据集,展示如何进行数据标注、预处理、训练以及评估。