1. 引言
随着现代农业的快速发展,农业机械化已经成为提高农业生产效率的关键因素。尤其是自动驾驶农业机械,如无人驾驶拖拉机和收割机,已经开始在一些农业生产中得到了应用。为了使这些自动驾驶设备能够在复杂的农业环境中进行导航和作业,基于视觉的自动驾驶系统显得尤为重要。
其中,计算机视觉技术为农业机械提供了智能感知能力,使其能够实时识别环境中的障碍物、作物、土地边界以及其他重要信息。YOLOv8(You Only Look Once Version 8)作为一款高效的目标检测模型,因其快速且高精度的特性,广泛应用于无人驾驶、智能监控等领域。本文将详细介绍如何使用YOLOv8构建一个农业机械自动驾驶视觉模块,结合UI界面展示检测结果,并介绍如何使用公共数据集进行模型训练和测试。
2. YOLOv8目标检测模型概述
YOLOv8(You Only Look Once Version 8)是YOLO系列目标检测算法的最新版本,凭借其卓越的速度和精度,成为目标检测领域的明星算法。YOLOv8相较于其前几代版本,在准确性、推理速度和计算资源需求等方面都做了大幅度的优化,使其成为大多数实时目标检测任务的首选。
2.1 YOLOv8的优势
- 高速实时检测