一、引言
舞蹈作为一门艺术形式,深受全球范围内不同文化的喜爱。随着人工智能技术的发展,尤其是深度学习的应用,舞蹈动作的自动评分系统已逐渐成为可能。通过计算机视觉技术,利用深度学习模型对舞蹈动作进行实时分析和评分,不仅能为舞蹈爱好者提供客观评价,还能为舞蹈教学、竞赛等场景提供有效支持。YOLOv8作为一款高效的目标检测算法,可以用于识别舞蹈中的动作元素,而结合推荐系统和评分算法,我们可以实现一个完整的舞蹈动作评分系统。
本文将详细介绍如何使用YOLOv8目标检测模型、UI界面和深度学习技术来构建舞蹈动作评分系统,并给出相应的实现代码和参考数据集。
二、系统设计
1. 系统目标
本系统的目标是通过YOLOv8模型分析舞蹈视频中的动作,计算舞蹈动作的质量评分,并提供实时反馈。系统将从以下几个方面进行设计:
- 实时舞蹈动作检测:使用YOLOv8模型对舞蹈视频中的每一帧进行目标检测,识别人体关键点及动作。
- 动作评分机制:根据舞蹈动作的准确性、流畅度、节奏感等指标,计算出舞蹈评分。
- UI界面展示:通过UI界面展示实时舞蹈视频、动作评分以及相关的分析数据。
- 数据存储