🧠 一、项目背景与意义
随着全球能源结构的转型,核电站作为一种清洁能源被广泛应用。然而,其潜在的核泄漏风险和辐射危害引发了公众对核电安全的持续关注。为了提升核电站的安全监控水平,亟需部署一套智能、实时、精确的辐射区监测系统。
本项目旨在构建一个基于深度学习的核电站辐射区监控系统,使用 YOLOv8(You Only Look Once v8) 实现目标检测与行为识别,并通过**图形用户界面(GUI)**提供直观的可视化交互,系统具有以下优势:
- 🔍 实时监测辐射区域是否存在人员、设备或异常行为;
- 💻 提供易用的用户界面,适合操作员监控;
- 📊 支持视频输入、摄像头实时监控和告警功能;
- 🌐 可拓展集成辐射检测传感器数据。
🧱 二、系统结构总览
系统由以下三个核心模块构成:
- 目标检测模块(YOLOv8) :识别辐射区域内的人员、物体、告警标志等;
- 可视化交互界面(基于