一、项目背景与研究价值
在现代电子制造业中,印刷电路板(PCB)是电子产品的核心组成部分,其质量直接影响产品的性能和可靠性。PCB制造过程中可能出现多种缺陷,如元件缺失、焊接不良、短路、开路等。传统的人工检测方法效率低、成本高,且容易受到人为因素影响。
为此,本文设计并实现了一套基于YOLOv10的PCB元件与焊接缺陷检测系统,结合PyQt5界面,用于自动识别PCB上的元件位置和焊接缺陷,提升检测效率和准确性。
系统支持:
- 支持导入图像/批量文件;
- 自动识别元件位置和焊接缺陷;
- 支持模型训练、评估;
- UI界面简单友好,部署轻量。
二、数据集准备
2.1 推荐数据集来源
以下是几个公开的PCB缺陷检测数据集,可用于模型训练和评估:
1)DeepPCB Dataset
- 包含1500对图像,每对包括一个无缺陷的模板图像和一个有缺陷的测试图像。
- 缺陷类型包括:开路ÿ