一、项目背景与研究价值
在现代制造业和物流行业中,产品的包装质量直接影响客户满意度和品牌形象。包装破损、标签错误等问题不仅可能导致产品退货,还可能引发法律责任。因此,建立一个高效、准确的包装质量监控系统具有重要意义。
传统的人工检测方法存在效率低、成本高、易出错等问题。随着深度学习技术的发展,基于计算机视觉的自动检测系统成为解决这一问题的有效途径。本文将介绍如何使用YOLOv10模型结合PyQt5界面,构建一个包装质量监控系统,实现对包装破损和标签错误的自动检测。
二、数据集准备
2.1 推荐数据集来源
为了训练和评估包装质量监控模型,需要准备包含包装破损和标签错误的图像数据集。以下是一些公开可用的数据集:
1)Damaged Package Detection Dataset
- 包含1000张图像,标注了破损和完好无损的包装盒。
- 数据集链接:Damaged Package Detection Dataset