SteelDefectDetector:基于YOLOv10的钢材表面缺陷识别系统

一、项目背景与研究价值

在钢铁制造过程中,表面缺陷如裂纹、锈蚀、划痕等会严重影响产品质量和使用寿命。传统的人工检测方法效率低下,且容易受到主观因素影响。随着深度学习技术的发展,基于计算机视觉的自动化检测方法成为研究热点。

YOLOv10作为最新的目标检测模型,具有高精度和实时性的特点,适用于工业场景中的缺陷检测任务。本文旨在构建一个基于YOLOv10的钢材表面缺陷识别系统,结合PyQt5实现可视化界面,提升检测效率和用户体验。


二、数据集准备

2.1 推荐数据集:NEU Surface Defect Database

NEU Surface Defect Database是由东北大学提供的公开数据集,包含六种典型的热轧钢带表面缺陷:Roboflow+3ResearchGate+3Kaggle+3

  • Crazing(裂纹)
  • Inclusion(夹杂)
  • Patches(
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

YOLO实战营

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值