一、项目背景与研究价值
在钢铁制造过程中,表面缺陷如裂纹、锈蚀、划痕等会严重影响产品质量和使用寿命。传统的人工检测方法效率低下,且容易受到主观因素影响。随着深度学习技术的发展,基于计算机视觉的自动化检测方法成为研究热点。
YOLOv10作为最新的目标检测模型,具有高精度和实时性的特点,适用于工业场景中的缺陷检测任务。本文旨在构建一个基于YOLOv10的钢材表面缺陷识别系统,结合PyQt5实现可视化界面,提升检测效率和用户体验。
二、数据集准备
2.1 推荐数据集:NEU Surface Defect Database
NEU Surface Defect Database是由东北大学提供的公开数据集,包含六种典型的热轧钢带表面缺陷:Roboflow+3ResearchGate+3Kaggle+3
- Crazing(裂纹)
- Inclusion(夹杂)
- Patches(