一、项目背景与研究价值
在现代制造业中,液体灌装过程的质量控制至关重要。传统的液位检测方法依赖于传感器或人工检查,存在成本高、效率低、易受环境影响等问题。随着计算机视觉和深度学习技术的发展,基于图像的液位检测方法逐渐成为主流。本文将介绍如何使用YOLOv10模型结合PyQt5界面,构建一个液体灌装液位检测系统,实现对瓶装液体是否灌装到位的实时检测。
二、数据集准备
2.1 推荐数据集来源
为了训练和评估液位检测模型,需要准备包含不同液位状态的瓶装液体图像数据集,并标注其位置。以下是一些公开可用的数据集:
1)Fill Level Object Detection Dataset - Roboflow
- 包含不同液位状态的瓶装液体图像,适用于液位检测任务。
- 数据集链接:Fill Level Object Detection Dataset - Roboflow