LiquidLevelDetector:基于YOLOv10的液体灌装液位检测系统

一、项目背景与研究价值

在现代制造业中,液体灌装过程的质量控制至关重要。传统的液位检测方法依赖于传感器或人工检查,存在成本高、效率低、易受环境影响等问题。随着计算机视觉和深度学习技术的发展,基于图像的液位检测方法逐渐成为主流。本文将介绍如何使用YOLOv10模型结合PyQt5界面,构建一个液体灌装液位检测系统,实现对瓶装液体是否灌装到位的实时检测。


二、数据集准备

2.1 推荐数据集来源

为了训练和评估液位检测模型,需要准备包含不同液位状态的瓶装液体图像数据集,并标注其位置。以下是一些公开可用的数据集:

1)Fill Level Object Detection Dataset - Roboflow
2)Liquid Level Detection - Roboflow
    评论
    添加红包

    请填写红包祝福语或标题

    红包个数最小为10个

    红包金额最低5元

    当前余额3.43前往充值 >
    需支付:10.00
    成就一亿技术人!
    领取后你会自动成为博主和红包主的粉丝 规则
    hope_wisdom
    发出的红包

    打赏作者

    YOLO实战营

    你的鼓励将是我创作的最大动力

    ¥1 ¥2 ¥4 ¥6 ¥10 ¥20
    扫码支付:¥1
    获取中
    扫码支付

    您的余额不足,请更换扫码支付或充值

    打赏作者

    实付
    使用余额支付
    点击重新获取
    扫码支付
    钱包余额 0

    抵扣说明:

    1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
    2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

    余额充值