一、引言
随着人工智能技术的飞速发展,深度学习和计算机视觉技术在多个行业得到了广泛应用。在农业领域,特别是在畜牧业中,牲畜的健康和行为分析至关重要。传统的监控和健康检查方法往往依赖于人工巡查,不仅效率低下,而且难以实现对大规模养殖场的实时监控。借助现代深度学习技术,尤其是目标检测算法,如YOLOv10,可以对牲畜的活动进行精确分析,帮助养殖场及时发现动物的异常行为或疾病症状,从而提高养殖效率并降低风险。
本文将介绍如何利用YOLOv10模型,通过监控养殖场中动物的活动与疾病症状,构建一个自动化的牲畜行为分析系统。我们将详细讲解数据集准备、YOLOv10模型的训练与推理、UI界面的开发,以及如何通过该系统实现对养殖场动物的实时监控与分析。
二、项目背景与目标
2.1 项目背景
畜牧业的健康管理一直是一个棘手问题。养殖场中的动物数量庞大,人工管理无法做到全面覆盖,且容易遗漏某些健康问题或行为异常。牲畜的行为异常往往是疾病或不适的早期表现,而及时发现这些异常可以为兽医提供宝贵的干预时间。
传统的检测方法通常需要大量人工干预,且无法做到实时监控。而通过目标检测技术,尤其是YOLOv10,我们可以高效地从视频或实时图像中识别动物的行为模式,包括但不限于走动、休息、进食、交配、舔毛、发病等活动。