一、项目背景
在现代智慧城市建设中,交通监测作为城市管理与规划的核心组成部分,对于道路资源的合理配置、交通事故的减少及环保政策的推进起着关键作用。尤其是对于车辆种类(如汽车、摩托车、卡车、公交车等)的分类统计,已成为城市智能交通系统(ITS)中的核心功能之一。
本项目基于2024年最新发布的YOLOv10目标检测框架,结合一个图形化用户界面(UI)系统,实现对道路交通视频中的车辆检测与分类统计。该系统具备如下特性:
- 支持 实时检测;
- 支持对汽车、摩托车、公交车、卡车等的独立统计;
- 拥有简洁的用户界面;
- 可灵活接入本地视频或摄像头流;
- 模块化代码,方便拓展训练与部署。
二、YOLOv10简介
YOLOv10 是由Ultralytics团队于2024年推出的最新一代YOLO目标检测模型,较前代(YOLOv8)具有以下优势:
- 精度更高:使用RepLayer、轻量化Self-Attent