引言
药品包装是保障药品质量的重要环节之一。药品的包装不仅承担着保护药品的作用,还需要确保每个药品包装完整、药片数量准确无误。由于手工检测容易出现疏漏,且工作强度大,自动化的药品包装检测系统显得尤为重要。通过基于深度学习的目标检测模型,我们可以实现药品包装的智能化检测,包括检查药片缺失和包装破损等问题。
本文将介绍如何利用YOLOv10进行药品包装检测,检测药片是否缺失以及包装是否破损,并结合UI界面展示这一过程。我们将详细探讨数据集准备、模型训练、UI界面开发等步骤,并提供完整的代码示例。
1. YOLOv10简介
1.1 YOLOv10模型概述
YOLO(You Only Look Once)系列是目前最受欢迎的目标检测算法之一,具备端到端的学习能力,并且在速度和精度上做到了较好的平衡。YOLOv10是YOLO系列的最新版本,相较于之前的版本,YOLOv10在网络架构和训练策略上都做出了显著的改进,能够更准确地检测出不同物体,并且具有更快的推理速度。
YOLOv10模型的优势包括:
- 高效的检测速度:可以实时进行图像检测,适合工业现场的在线检测。
- 优异的精度