引言
康复训练是病后恢复过程中至关重要的一部分,规范的运动可以帮助患者更快、更有效地恢复健康。传统的康复训练过程中,患者的动作规范性往往依赖于医生或康复师的手动评估,但这既费时又容易受到人为因素的干扰。随着计算机视觉和深度学习技术的进步,基于视觉的自动化康复训练监测系统已成为可能,能够通过实时监测患者的运动轨迹并评估其动作规范性,从而辅助康复师对患者的训练效果进行评估并及时纠正不规范动作。
本文将介绍如何基于YOLOv10进行康复训练监测,识别患者动作是否规范。我们将探讨如何使用YOLOv10模型进行人体姿势识别与动作分析,结合UI界面实时展示监测结果,帮助康复训练过程中的评估和反馈。文章将详细阐述数据集准备、模型训练、UI开发和代码实现等步骤,并提供完整的代码示例。
1. YOLOv10概述
1.1 YOLOv10简介
YOLO(You Only Look Once)是目前最广泛应用的目标检测算法之一,拥有速度快、精度高等优点。YOLOv10是YOLO系列的最新版本,采用了更高效的网络架构和训练方式,能够在各种复杂的环境中进行目标检测,特别适用于实时目标检测任务。
YOLOv10的特点:
- 高效率和高精度:YOLOv10保持了YO