基于YOLOv8的无人机农田作物生长状况监测系统:实现与数据集指南

一、项目概述

本项目旨在通过无人机采集的农田航拍图像,利用YOLOv8模型对作物的生长状况进行分类和分割,实现对作物健康状态的实时监测。系统集成了用户界面,方便用户进行图像上传、模型推理和结果可视化操作。GitHub


二、数据集选择与准备

为了训练和评估模型,需要高质量的农田作物生长状况数据集。以下是推荐的数据集:

1. farmlandProject483 数据集

该数据集包含1200张标注图像,分为三类:negative(生长不良)、neutral(正常)和positive(生长良好)。数据集适用于作物健康状态的分割任务,已在GitHub上公开:GitHub+2GitHub+2GitHub+2

  • GitHub链接:
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

YOLO实战营

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值