一、项目概述
本项目旨在通过无人机采集的农田航拍图像,利用YOLOv8模型对作物的生长状况进行分类和分割,实现对作物健康状态的实时监测。系统集成了用户界面,方便用户进行图像上传、模型推理和结果可视化操作。GitHub
二、数据集选择与准备
为了训练和评估模型,需要高质量的农田作物生长状况数据集。以下是推荐的数据集:
1. farmlandProject483 数据集
该数据集包含1200张标注图像,分为三类:negative(生长不良)、neutral(正常)和positive(生长良好)。数据集适用于作物健康状态的分割任务,已在GitHub上公开:GitHub+2GitHub+2GitHub+2
- GitHub链接: