随着全球对水产品需求的不断增长,水产养殖业面临着提高生产效率和确保鱼群健康的双重挑战。传统的鱼群计数和病鱼检测方法依赖人工观察,不仅效率低下,而且容易受到人为因素的影响。近年来,计算机视觉技术的发展为水产养殖提供了新的解决方案。本项目旨在构建一个基于YOLOv8的水产养殖鱼群计数与病鱼检测系统,结合图形用户界面(GUI),实现对鱼群数量的实时估算和病鱼的自动识别。
一、项目概述
1.1 项目背景
水产养殖是满足全球蛋白质需求的重要途径。然而,鱼群数量的准确统计和病鱼的及时检测对于养殖管理至关重要。传统方法存在效率低、准确率低等问题,亟需引入自动化、智能化的技术手段。
1.2 项目目标
- 构建一个基于YOLOv8的目标检测模型,能够实时统计鱼群数量并识别病鱼。
- 开发一个用户友好的GUI界面,方便操作人员进行监控和控制。
- 集成模型与GUI,实现水产养殖的智能化管理。
二、数据集准备
2.1 鱼群计数数据集
为了训练和评估鱼群计数模型,需要一个包含丰富鱼群图像的数据集。
我们选用以下数据集:
- Fish Count