1. 项目背景与研究意义
手术器械清点是保障手术安全、预防器械遗留体内的重要环节。传统人工清点依赖手工记录,效率低且易出错。随着计算机视觉技术的发展,基于深度学习的自动器械检测系统逐渐成为提高手术安全性的关键技术手段。
本项目旨在利用YOLOv8深度学习模型,实现手术器械的自动识别与清点,辅助医疗人员确保术后器械无遗漏,减少医疗事故风险。
2. 手术器械清点的挑战
- 器械种类繁多:手术器械种类复杂,形状、大小各异。
- 遮挡与重叠严重:器械摆放密集,存在遮挡,识别难度大。
- 图像质量差异:手术环境光照变化大,图像可能模糊。
- 标注数据稀缺:高质量标注样本有限,限制模型性能。
3. 技术路线与整体架构
采用YOLOv8目标检测网络,结合高效的数据增强技术及迁移学习,实现多类别手术器械的快速识别。基于Python和Tkinter构建简易UI界面,支持实时加载图像及检测结果展示。
整体架构如下:
- 数据采集与标注 → 数据预处理 → YOLOv8模型训练