一、项目背景与意义
野生动物纪录片不仅记录了大自然中珍贵的生态瞬间,也为保护濒危动物、研究生态环境提供了宝贵数据。随着无人机和固定摄像头的普及,大量视频数据积累,传统人工观看与分析耗时费力。利用深度学习技术,尤其是目标检测与追踪算法,可以实现自动化识别和统计野生动物行为、种群数量及活动轨迹。
本项目基于最新YOLOv8目标检测框架,构建一套面向野生动物纪录片的智能追踪系统。通过UI界面,用户可以实时查看检测结果和动物轨迹,为生态研究和保护决策提供技术支持。
二、技术方案综述
2.1 功能模块
- 动物检测:基于YOLOv8识别特定动物种类,如狮子、大象、斑马等。
- 多目标追踪:为每个检测到的动物分配ID,实现个体连续追踪。
- 轨迹绘制:实时绘制动物运动轨迹,辅助行为分析。
- 数量统计:统计每帧及全视频中各类动物数量变化。
- UI展示:显示视频画面、检测框、追踪ID、轨迹及统计信息。
- 数据导出:支持轨迹和统计数据导出为CSV格式。