一、项目背景与意义
现代化学实验中,监测试管内的沉淀形成及变色反应是实验判断和控制的关键环节。传统依赖人工视觉观察,不仅效率低,还存在误判风险,尤其在多试管同时反应或反应微弱时,容易忽略细节。
借助计算机视觉和深度学习技术,实现对实验过程的实时自动监控,能显著提高实验准确度和自动化水平。本文基于YOLOv8目标检测算法,设计一套能检测试管中沉淀和变色反应的智能系统,配合用户友好的UI界面,实现对实验室反应过程的有效辅助和监督。
二、问题分析与系统设计目标
2.1 问题分析
- 目标多样且细粒度:沉淀体积、颗粒形态多样,变色反应色彩差异细微;
- 光线和环境影响大:实验室光源多变,反应液透明度和折射率影响识别;
- 动态检测需求:需要实时监控反应进展,检测过程动态变化;
- 小样本数据集稀缺:实验场景数据有限,需结合数据增强与迁移学习提升效果。
2.2 系统设计目标
- 精准检测沉淀和颜色变化