1. 项目背景与意义
数学公式是科学教学和科研中的重要组成部分。传统的教学中,老师的板书公式转录到电子文档是一个费时费力的过程。实现自动识别手写数学公式,尤其是从黑板或纸质板书中识别并转化为数字文本,对于提升教学效率、推动数字化教育具有重要价值。
手写公式识别相比普通文本识别更具挑战,因为公式结构复杂,符号多样,且存在行内与上下标、分数、根号等二维结构。结合目标检测和文本识别技术,基于YOLOv8实现公式区域检测,配合OCR(光学字符识别)完成结构化文本转换,是目前研究和应用的热点方向。
2. 任务定义与挑战
任务定义
- 输入:包含手写数学公式的图像(拍摄的板书、作业纸等)
- 输出:对应的数字文本形式的数学公式(如LaTeX格式或文本表达式)
关键挑战
- 手写公式复杂的二维结构识别
- 公式符号多样且形态不一
- 图片拍摄角度、光照影响及噪声
- 需要精确检测公式区域并分割符号