1. 项目背景
随着城市公共交通的快速发展,公交车站乘客数量激增,合理统计排队人数对于缓解拥挤、优化公交调度和提升乘客体验至关重要。传统的人工统计效率低且易出错,基于深度学习的目标检测技术为自动化乘客计数提供了有效手段。
本项目结合最新的YOLOv8目标检测算法,设计一套公交车站乘客排队人数统计系统,能够在视频流中实时识别并计数排队乘客,并通过简单的UI界面进行直观展示。
2. 任务定义与挑战
任务定义
- 输入公交车站监控摄像头视频或图像
- 实时检测视频中乘客目标(人)
- 统计当前排队人数
- 可视化统计结果及实时人数变化曲线
关键挑战
- 乘客在站台密集聚集,遮挡严重
- 光线和天气影响检测准确性
- 排队区域边界模糊,需设计合理计数规则
- 需要模型轻量化和实时推理性能
3. 技术选型
技术/工具 | 说明 |
---|---|
YOLOv8 | 最新版本YOLO目标检测算法,性能优异且易用 |
Ultralyt |