1. 项目背景与意义
随着城市化进程加快,高速公路的交通流量急剧增加,交通拥堵现象日益严重。高速公路拥堵不仅带来时间浪费,还增加了事故风险和环境污染。因此,建立一个实时、准确的高速公路拥堵监测系统,对改善交通管理、提升道路通行效率具有重要意义。
传统的拥堵监测依赖于地磁传感器、视频监控人工分析等方式,效率低且成本高。近年来,基于深度学习的目标检测技术得到了快速发展,尤其是YOLO系列(You Only Look Once)模型凭借其高效实时的特性成为视频目标检测的首选方案。
本文聚焦于利用最新YOLOv8目标检测模型,结合UI界面,实现高速公路车辆检测和拥堵监测的系统设计。通过摄像头采集实时视频,利用YOLOv8检测车辆数量和状态,结合界面展示拥堵情况,为交通管理提供智能辅助。
2. 目标检测技术与YOLOv8简介
2.1 目标检测简介
目标检测技术旨在识别图像或视频中的多个目标对象,并给出它们的类别和位置边界框。它是计算机视觉中的基础任务,广泛应用于安防监控、自动驾驶、工业检测等领域。
常见目标检测算法分为两大类:
- 两阶段检测器:如Faster R-CNN,先生成候选框