基于YOLOv8的异常行为检测(打架、奔跑等)系统设计与实现

一、引言

异常行为检测在智能安防、公共安全、智慧城市等领域具有重要意义。通过自动识别视频中异常行为(如打架、奔跑等),可帮助监控人员及时预警,提升安全管理效率。传统视频监控依赖人工盯守,效率低下且易漏报。深度学习的发展使得基于视觉的异常行为检测成为可能。

本文基于最新的目标检测框架YOLOv8,结合公共数据集,构建了一个可实时检测打架、奔跑等异常行为的系统,且配备简单易用的UI界面,方便部署和使用。


二、问题定义与挑战

2.1 异常行为检测的定义

异常行为检测旨在自动识别视频中出现的异常动作或行为模式。这里,我们聚焦于两类异常行为:

  • 打架行为:人员间发生肢体冲突。
  • 奔跑行为:异常快速移动,通常伴随紧急或混乱情境。

2.2 主要挑战

  • 行为复杂且多样:同一类异常行为在不同环境、不同人群中表现差异较大。
  • 场景变化大:室内外光照、角度、遮挡复杂。
  • 实时性要求高:应用中需快速检测以便及时响应。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

YOLO实战营

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值