一、引言
异常行为检测在智能安防、公共安全、智慧城市等领域具有重要意义。通过自动识别视频中异常行为(如打架、奔跑等),可帮助监控人员及时预警,提升安全管理效率。传统视频监控依赖人工盯守,效率低下且易漏报。深度学习的发展使得基于视觉的异常行为检测成为可能。
本文基于最新的目标检测框架YOLOv8,结合公共数据集,构建了一个可实时检测打架、奔跑等异常行为的系统,且配备简单易用的UI界面,方便部署和使用。
二、问题定义与挑战
2.1 异常行为检测的定义
异常行为检测旨在自动识别视频中出现的异常动作或行为模式。这里,我们聚焦于两类异常行为:
- 打架行为:人员间发生肢体冲突。
- 奔跑行为:异常快速移动,通常伴随紧急或混乱情境。
2.2 主要挑战
- 行为复杂且多样:同一类异常行为在不同环境、不同人群中表现差异较大。
- 场景变化大:室内外光照、角度、遮挡复杂。
- 实时性要求高:应用中需快速检测以便及时响应。