一、项目背景与目标
随着机器人技术的发展,智能机器人逐步应用于工业自动化、仓储物流、智能制造等场景。而抓取系统作为机器人核心功能之一,其准确性和实时性尤为关键。传统基于图像处理的抓取定位方式,在复杂背景下鲁棒性差,已难以满足实际需求。
近年来,基于深度学习的目标检测算法迅猛发展,尤其是YOLO(You Only Look Once)系列模型在实时性和精度之间达到了良好平衡,广泛应用于视频监控、无人驾驶、智能安防等领域。
本项目旨在构建一个基于YOLOv8的机器人抓取目标定位系统,通过视觉识别实现对工作台上物体的位置检测,并输出其坐标信息,为后续的机械臂控制提供精确的抓取点数据。
二、系统总体架构
本项目命名为:RobotTargetLocator,整体架构分为以下四部分:
- 数据采集与标注: 构建包含常见工业物体的数据集,如螺丝刀、扳手、轴承、螺母等;
- 模型训练: 基于YOLOv8进行目标检测模型训练;
- 目标定位与坐标映射: 提取检测框坐标并转换为机器人坐标;